Does language regard vary?

Dennis R. Preston
Oklahoma State University & Michigan State University (Emeritus)

This paper outlines a cognitive map for variation in language attitudes, metalinguistic beliefs about language, and language ideological frameworks – grouped together as “language regard.” After establishing input, processing, and response models, it goes on to examine experimental findings that show variability in regard that are consistent with this map and to outline the importance of that variability to more general concerns of sociolinguistics, touching in particular on its explanatory position in studies of variation and change.

1. Introduction

Sociolinguistics is built on the foundation that social groups and individuals produce variable forms that indicate social identity and respond to social and linguistic environments. Some models suggest further that variability is an integral part of the process of language change, making that process available to scholarly enquiry (Weinreich, Labov & Herzog 1968: 99), something previously thought to be impossible (e.g., Hockett 1958: Chapter 52 [“The Nature of Sound Change”]).

Weinreich, Labov and Herzog explicitly refer to social factors in all five of what they call the problems of language variation and change: constraints, transition, embedding, evaluation, and actuation (101–102); I will be principally concerned here with evaluation:

The theory of language change must establish empirically the subjective correlates of the several layers and variables in a heterogeneous structure. Such subjective correlates of evaluations cannot be deduced from the place of the variables within linguistic structure. Furthermore, the level of social awareness\(^1\) is a major property of linguistic change which must be determined directly.

1. The phrase “level of social awareness” suggests the distinction between overt (conscious) and covert (unconscious) features highlighted in Labov’s later characterization of indicators, markers, and stereotypes (e.g., 1972: 314).
Subjective correlates of change are more categorical in nature than the changing pattern of behavior: their investigation deepens our understanding of the ways in which discrete categorization is imposed on the continuous process of change.

This passage directly relates “subjective correlates” to variation and change and calls for their independent investigation, i.e., a study of such factors outside the instances of their production distribution. It suggests, however, a uniformity of these subjective correlates, one unlike the diversity found in production. Labov is even more explicit about this in his later identification of the defining character of a speech community:

[Evaluation of /r/] is typical of many other empirical findings which confirm the view of New York City as a single speech community, united by a uniform evaluation of linguistic features, yet diversified by … stratification in … performance. (Labov 1972:117, italics mine)

This uniformity might refer only to directionality – i.e., all New Yorkers agree that nonprevocalic /r/ presence is more formal, but another interpretation is that evaluation lacks variety, resulting in a search for “the” rather than “a” subjective correlate. In this chapter I will argue that there are variable subjective responses, both to one’s own and other varieties, and that this variation is as important as the variation found in production, although its patterns may not be the same.

One feature of these subjective correlates is that they are embedded in and require an investigation of cognitive factors. Although it is difficult to conceive of any area of linguistics that does not take cognitive facts into consideration, if any subfields have overtly expressed such interest, it is those of language attitudes, folk beliefs about language, and ideological frameworks, areas of investigation grouped together here as language regard (Preston 2010a). I propose this label because there are folk concerns about language that are not necessarily evaluative and therefore not attitudinal – since many social psychologists take attitudes to be an evaluative subset of beliefs (e.g., Kruglanski & Stroebe 2005:327). I will also not use language beliefs as the more inclusive term, for beliefs are “…estimates of

2. This notion of a uniformity of norms as the defining characteristic of a speech community is shared by Hymes:

Tentatively, a speech community [italics in the original] is defined as a community sharing rules for the conduct and interpretation of speech, and rules for the interpretation of at least one linguistic variety. … The sharing of grammatical (variety) rules is not sufficient. (1972:54)
the likelihood that the knowledge one has acquired about a referent is correct …” (Wyer & Albarracín 2005:273), but some aspects of language regard are the result of many such beliefs and other less well-specified conceptual bits. I also prefer regard to ideology, a term that refers to the positioning of languages, varieties, and their units in the belief structure of groups. As Irvine (1989) defines it, language ideology is “…the cultural system of ideas about social and linguistic relationships…” I do not want to exclude any of these areas and therefore choose regard as a more inclusive label. Like Weinreich et al., I consider the study of language regard to be essential to sociolinguistics, especially for the explanatory characteristics it uncovers.

I begin anecdotally. Some time ago I became annoyed with the practice of folklorists’ respellings of some of the words of their respondents (Preston 1982). It appeared to me that only lower-status, minority, and other negatively stereotyped respondents were so respelled. Although many were attempts to capture what struck folklorists as local, colorful, or nonstandard, many were examples of eye-dialect. Such respellings as duz for does, for example, captures nothing of a local, colorful, or nonstandard pronunciation, since the most common US English pronunciation is [dəz] (or [dʌz] under weak stress), and that pronunciation is surely reflected in duz. By studying a decade of articles from the Journal of American Folklore, I confirmed that respellings were more often applied to caricatured groups or individuals perceived as ethnic, regional, or nonstandard speakers, but my point here is the difference in regard that is triggered by a spelling as opposed to a pronunciation. When one hears [dəz], the speaker is “normal,” “like us,” but when one sees duz, the speaker is downgraded, caricatured, or at best romanticized. (See Preston 1985b for experimental support.) If spelling versus pronunciation (when no actual difference exists) can redirect our regard, what other triggers for variability might there be and what underlies such variable responses?

3. I have space here only to refer the reader to the denial by folklorists of any attempt to caricature minority, isolated, or culturally different groups. Although they pride themselves on cultural relativism, they were oddly blind to their own “linguicism,” claiming that their quaint (and largely inaccurate) respellings were attempts to capture what they called either the authentic or beautiful voices (or both) of their respondents. (See Fine 1983, and Preston 1983 for an exchange and Preston 2000 for a position that addresses respondent reclaiming of personal voices.)
2. The cognitive backgrounds of language regard

2.1 Perception

Figure 1 outlines *Perception* as beginning with sensation (*Sensing*), made complex by conscious versus nonconscious interpretations of *noticing* (see below), then processed by *Discrimination* and *Classification*, all making up the strategies that lead to *Comprehension*. There is a connection between *Production* and *Comprehension*, but few believe nowadays that comprehension is just a production mechanism run backwards.5

![Figure 1. The required elements of language comprehension](image)

2.2 The cycle of production, perception, and regard

Figure 2 adds language regard and indicates that it may result from nonconscious processes or deliberative ones, which may themselves be interconnected if one believes that the two mechanisms interact. It shows as well that language regard can influence all other components. Tracing these influences and showing how they contribute to variability in regard and its importance to the study of variation and change is the goal of this chapter.

First, however, I want to examine the components that trigger and shape language regard itself. The points of the triangle in Figure 3 are *a*: language (broadly conceived), *b*: conscious responses, and *c*: nonconscious responses.

4. This rough outline should be compatible with a variety of modern theories of speech perception, perhaps even ones that contradict one another.

5. The “few” and “just” of this sentence allow for the reasonable assumption that speech perception relies on or is at least guided by some production strategies (e.g., Liberman et al. 1967; Fowler 1986; Stevens 2002).
Does language regard vary?

Figure 2. Regard and its influence on all elements of production and comprehension

(a') Cognitive states & processes that govern a)

Language production & comprehension

1) Noticing
2) Classifying
3) Imbuing

(bc' Cognitive states & processes that guide b & c)

Cultural belief system

Figure 3. The relationships between language and language regard and their underlying components (modified from Niedzielski & Preston 2003:xi)
In this framework, which is similar to the one proposed by Purschke (this volume), one may trace the path of a language regard event. I begin with the assumption that there is nothing inherent in language itself (the a material of this triangle) that triggers language regard (but see, for example, van Bezooijen 2002) and suggest that, after noticing (Step 1 of Figure 3), regard details are formed by an association between the noticed language feature (from any linguistic level) and beliefs about speakers and groups. Here is a detailed example:

A speaker of American English produces an [aː] in the word “guide” (i.e., monophthongizes the vowel), an instance of production at a.

Step 1: A hearer notices a (perhaps because their own pronunciation is diphthongal [ai]).

Step 2: The hearer classifies this as “American Southern.”

Step 3: The hearer retrieves caricatures of “American Southerners” from their cultural belief system and imbues fact a with them.

Through b’, a hearer has a regard response (at b or c).

This process must be slightly modified in some cases, for similar responses may arise even though the classificatory step is different. That is, there is the possibility of an a having been imbued so often by cultural belief material that it may carry characteristics with it directly, without any appeal to the group that provided the characteristic in the first place, a process Irvine calls iconization (2001:33). For example,

A speaker of American English produces an [aː] in “guide.”

Step 1: A hearer notices it.

Step 2: The hearer classifies this as “ignorant,” having imbued it with this identity so often that beliefs about Southerners are no longer necessary.

Step 3: The hearer accesses beliefs about “ignorant language” from their cultural belief system and imbues fact a with them.

Through b’, a hearer has a regard response (at b or c).

6. I believe that noticing, contra Schmidt 1995, can occur consciously or unconsciously, an interpretation consistent with modern social psychological thinking, particularly perhaps in the literature that focuses on the search for implicit responses (e.g., Devine 1989; Fazio et al. 1995; Dovidio et al. 1997). What I mean by noticing is simply this: the uptake of an event such that it can be processed. That the noticing of some language events is more likely than others is a given and is the subject of considerable work on salience (e.g., Preston 1996a, to appear; Sibata [1971] 1999; Silverstein 1981; Trudgill 1986:10–21, as well as Labov’s tripartite distinction referenced in Note 1). Since I am as much concerned here with nonconscious as conscious regard, I will not dwell on what it is in a language signal that triggers the sort of overt or conscious regard typical of folk linguistic research. I will assume here that all language production is noticed and given some regard status, even when there is nothing in the production to attract the attention of the hearer to any part of the signal as different or stereotypical. Those interested in the conditions that trigger overt knowledge of language variety should consult Sibata [1971] 1999; Silverstein 1981; Preston 1996a; and Preston to appear.
Does language regard vary?

To flesh this out further, I borrow from social psychology in the representation in Figure 4. Objects to be regarded are presented within specific “eliciting conditions,” which, as I will show below, is one of the explanations for the variability to be found in regard. Bassili and Brown (2005:553) account for how a perceiver begins to process the *attitude object* in terms of

A. the *elicitation conditions* it has been presented in (please note “Associated Representations”),
B. the perceiver’s procedural capacities,
C. the perceiver’s pre-existing knowledge, and
D. the perceiver’s underlying conceptual structure, shown in Figure 4 as a “connectionist model” (e.g., McClelland & Rumelhart 1986).

![Figure 4](image.png)

Figure 4. Outline of an attitudinal setting, procedural pathway, and activation of regard features (adapted from Bassili & Brown 2005:554)

Evaluation takes place within an attitudinal cognitorium (Rosenberg 1968), which has all the features of a neural network. Figure 5 enlarges the cognitorium and shows that some items are strong (1) and some weak (2); some connections are strong (3) and some weak (4); some items are not connected at all (5), and the connections between others are inhibited (6). All these connections and weights are formed by experience, a broad term meant to cover not just the fact of prior occurrences but also of their frequency, recency, intensity, and so on with regard to their importance in establishing both the strength and connectedness of items in the cognitorium.
Once regard factors are triggered in the cognitorium, a response emerges, either an implicit one (Figure 6) or an explicit one (Figure 7).
Does language regard vary?

Even distinguishing between implicit and explicit responses, however, is an oversimplification; it implies that the response is the unique result of one or the other process. The cognitorium is usually activated by inputs from both automatic processes and working memory, however, and each type is weighted. In Figure 8...
the automatic processes are strongest (thicker lines), suggesting major uncon-
scious input, but the arrows could have been of opposite (or perhaps even of equal)
thicknesses. Note, however, that the “Response” is a result of the inputs from both
processes.

![Diagram of Implicit and Explicit Response Inputs](image)

Figure 9. A “weight change” in the emergence of a response (modified from Bassili & Brown 2005:554)

Even greater complexity is shown in Figure 9 where “Working Memory” has
provided a corrective to the first dominant input from automatic processes due to
the fact that the implicitly triggered response might be criticized, for being rude,
racist, impolite, etc…. A “heavy” explicit pathway emerges from working memory
and reformulates the input, giving greater weight in the response to conscious
activity.

In what follows I give evidence for the variety and contradictions that can
arise if this characterization of the storage and retrieval of regard facts is a plau-
sible explanation. I depend largely on data collected over two decades in south-
eastern Michigan (US).

3. Evidence

In perceptual (folk) dialectology, one simple way of determining regional language
regard asks respondents to identify areas on the basis of a regard category. The
earliest of these (Preston 1985a) asked respondents to rate the US states for their use of “correct” and “pleasant” varieties of English.

As Figure 10 shows, only Michigan scores in the 8.00–8.99 range; its residents clearly believe their English to be the most correct in the country. Contrast the question of regional correctness of US English when presented to southern US speakers (Alabama).

Figure 11 shows that for Alabamians, there is still some bad English in the US South (Mississippi, Louisiana, and Texas), but they are all to the west of Alabama, which reckons itself a notch higher. But it does not fare so well either; Alabamians give themselves and most of the country fair-to-middling 5.00–5.99 scores, a far cry from the unique 8.00–8.99 Michiganders assigned themselves. Like Michiganders, however, they don’t care much for New Jersey and New York City.

There is surely no need here to present further evidence of variation across regional and many other demographic divides. I will also not pursue at any great length the differences that arise from seeking patently different regard characteristics. Figure 12 shows what the same southeastern Michiganders whose results for “correctness” were shown in Figure 10 believe regarding “pleasantness.”
Figure 11. Alabama ratings for the 50 US states, New York City, and Washington DC for correctness (1=least correct, 10=most correct) (Preston 1996b:312)

Figure 12. Southeastern Michigan ratings for the 50 US states, New York City, and Washington DC for pleasantness (1=least pleasant, 10=most pleasant) (Preston 1996b:312)
These Michiganders, who are so focused on correctness, do not treat pleasantness so distinctively. Michigan is no longer unique; four other states (nearby Minnesota and Illinois, as well as Colorado and Washington) are equally pleasant; every southern state has come up one notch, and the overall pleasantness range is reduced from the correctness range of 3.00–3.99 to 8.00–8.99 to one of only 4.00–4.99 to 7.00–7.99.

Pleasantness is not at all like this for the Alabamians, as Figure 13 shows. Their focus is on pleasantness, and they find themselves as strongly and uniquely pleasant as the Michiganders did for their own correctness; their overall range is the strongest 2.00–2.99 (New Jersey pleasantness) to 8.00–8.99 (local pleasantness).

These contrasts confirm what did not really need confirmation – that there is variety in regard as one changes respondent demographics, but it also does away with one common sense prediction about such studies – that locals will always regard their speech as best, clearly not the case for Alabama correctness and only weakly so for Michigan pleasantness.

Figure 13. Alabama ratings for the 50 US states, New York City, and Washington DC for pleasantness (1=least pleasant, 10=most pleasant) (Preston 1996b: 312)

The oldest tradition in perceptual dialectology, however, does not ask respondents to rank sites for such characteristics as correctness and pleasantness but asks instead to what extent other regions are similar or different (e.g.,
When the same Michiganders whose correctness and pleasantness scores are shown in Figures 10 and 12 were asked to determine the degree of difference between local speech and the other 49 states, the results were as shown in Figure 14. But do different tasks tease out different regard responses from the same respondents?

Figure 14. Southeastern Michigan mean score ranges for ratings for the 50 US states for degree of difference (1=not different, 2=slightly different, 3=very different, 4=unintelligibly different) (Preston 1996b:312)

The Michigan respondents’ differences in the ratings of correctness and pleasantness of varieties in the US was expected, but why do both differ from the task of ranking other areas for degree-of-difference (along the four-point scale shown in Figure 14)? Correctness (prestige, standardness) and pleasantness (solidarity) are well-established in the social psychological literature as the major constructs in language regard (e.g., Ryan et al. 1982). If Michigan is uniquely different for correctness (Figure 10) and equally pleasant as two nearby and two western states (Washington and Colorado, Figure 12), why isn’t one or the other of those attributes (or a combination of the two) expressed or at least clearly influential in the degree of difference task results shown in Figure 14?
Perhaps the difference in scale (1–4 versus 1–10) masks the similarity between difference on the one hand and correctness or pleasantness on the other. A closer look at the maps will show that that is not the case. In Figure 14 both the northeast (all of New England as well as New York, New Jersey, Maryland, and Delaware) and nearly all of the South (except for Louisiana, Mississippi, and Alabama) are “very different” from Michigan, but in neither the correctness task (Figure 10) nor the pleasantness task (Figure 12) are the Northeast and South ranked similarly.

If there is such a mismatch between not just correctness and pleasantness (as expected) but also between those two and degree of difference, perhaps one should just note that difference is a new regard category. Perhaps.

Another technique in perceptual dialectology asks respondents to outline (and label) on a blank or minimally detailed map the areas of a region where people speak differently. This task should yield results very similar to the degree-of-difference ones shown in Figure 14. A generalized map of the same southeastern Michigan respondents was derived from individual maps such as those shown in Figures 15 and 16.

![Figure 15. A hand-drawn map of US speech regions by a southeastern Michigan respondent](image)

These individual maps, interesting as they are for ethnographic interpretation, do not reveal the general tendencies of local respondents. Figure 17 shows a
generalized map of US speech regions derived from 147 individual maps drawn by southeastern Michigan respondents.7

This task also results in areas that do not correspond to those given in Figures 10 (correctness), 12 (pleasantness), and 14 (degree of difference) for the same respondents. Here, for example, many respondents agree that Texas and California are separate speech regions, but neither is ever identified uniquely in the previous tasks. The core South is also considerably larger than the three states identified in Figure 14 and extends much farther east.

Again, one may argue that a task that asks for outlines of speech areas is different from one that asks for degrees of difference from the home area (or of such regard attributes as pleasantness and correctness). Indeed it is, but I argue here that just such minor task differences allow respondents to retrieve slightly different cultural meanings from their cognitoria.

7 Figure 17 is based on a procedure developed by Preston and Howe (1987); it is now superseded by GIS mapping software; for an outline of GIS procedures in the framework of perceptual dialectology see Montgomery & Stoeckle 2013.
The differences in these task results, however, also inform one another and show the importance of addressing the variability in regard by submitting such a variety of tasks rather than assuming that one has assessed the singular or uniform attitude of an individual or speech community through one task. Suppose, for example, that the results of Figure 17 are interpreted without resource to the other work described here. Look at the right-hand side of that figure to see the number of respondents who drew each speech area. #1, the US South, was drawn by 134 of 147 respondents (.94). Although that’s a lot like Figure 14, where the South was the area ranked with the highest degree of difference, that will not explain the next two highest ratings, areas #2 and #3, the home (Great Lakes) area and an area focused on New York City, respectively. A glance back at correctness scores for these respondents (Figure 10) will show that the South, the local area (Michigan) and New York City are the best (local) and worst (New York City and the South) rated areas. This shows that the draw-a-map task, which asked only for areas where English is spoken differently in the US, is importantly tied to correctness, perhaps the dominating feature that gave such salience for both the local (correct) and the New York City and southern (incorrect) areas. In other words, when faced with the task of outlining those areas of the US that exhibit speech differences, the connection between “speech differences” and “language correctness” looms very large for these southeastern Michigan respondents, and we are able to see the influence of various aspects of the cognitorium.

Can a different task tease out another but related aspect of Michigan regard for language variety? I believe so. Recall that, unlike the Alabama respondents, who put such great stock in language pleasantness (Figure 13), the Michiganders...
seem less impressed with it (Figure 12). To approach this question of pleasantness more specifically, the well-established matched guise technique was used (e.g., Shuy & Fasold 1973), but the stimulus was a regional identification rather than a voice sample. The first step in such work is to derive the labels from local respondents, and, to accomplish this, undergraduate students (again all from Michigan) were shown a simplified version of Figure 17 and asked to write down any labels or descriptions that entered their minds when they considered the speech of these various regions. The following were the most frequent labels they offered (although several of the “opposites” were later supplied, including all the negatives of nasal, drawl, and twang):

- slow – fast
- formal – casual
- educated – uneducated
- smart – dumb
- polite – rude
- snobbish – down-to-earth
- nasal – not nasal
- normal – abnormal
- friendly – unfriendly
- drawl – no drawl
- twang – no twang
- bad English – good English

Another set of similar respondents (N=85) were then shown the same map used to elicit the labels and asked to evaluate each of the regions shown in Figure 17 on a six-point scale for each of these twelve traits. The results are shown in Table 1.

Table 1. Ratings for the North (the local area) and the South for twelve traits by southeastern Michigan respondents on a one-to-six scale (Preston 1999b:366)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Mean</th>
<th>Attribute</th>
<th>Rank</th>
<th>Rank</th>
<th>Factor</th>
<th>Mean</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>–1&2</td>
<td>4.66</td>
<td>Casual</td>
<td>1</td>
<td>12</td>
<td>–1&2</td>
<td>3.53</td>
<td>Casual</td>
</tr>
<tr>
<td>2</td>
<td>4.58</td>
<td>Friendly</td>
<td>2</td>
<td>9.5</td>
<td>2</td>
<td>4.00</td>
<td>Friendly</td>
</tr>
<tr>
<td>–1&2</td>
<td>4.54</td>
<td>Down-to-earth</td>
<td>3</td>
<td>6</td>
<td>2&–1</td>
<td>4.19</td>
<td>Down-to-earth</td>
</tr>
<tr>
<td>2</td>
<td>4.20</td>
<td>Polite</td>
<td>4</td>
<td>9.5</td>
<td>2</td>
<td>4.00</td>
<td>Polite</td>
</tr>
<tr>
<td>ø</td>
<td>4.09</td>
<td>Not nasal</td>
<td>5</td>
<td>11</td>
<td>ø</td>
<td>3.94</td>
<td>Not nasal</td>
</tr>
<tr>
<td>1&2</td>
<td>3.22</td>
<td>Normal [Abnormal]</td>
<td>6</td>
<td>3</td>
<td>1&2</td>
<td>4.94</td>
<td>Normal</td>
</tr>
<tr>
<td>1</td>
<td>3.04</td>
<td>Smart [Dumb]</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>4.53</td>
<td>Smart</td>
</tr>
<tr>
<td>1</td>
<td>2.96</td>
<td>No twang [Twang]</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>5.07</td>
<td>No twang</td>
</tr>
<tr>
<td>1</td>
<td>2.86</td>
<td>Good English [Bad English]</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>4.41</td>
<td>Good English</td>
</tr>
<tr>
<td>1</td>
<td>2.72</td>
<td>Educated [Uneducated]</td>
<td>10</td>
<td>8</td>
<td>1</td>
<td>4.09</td>
<td>Educated</td>
</tr>
<tr>
<td>1</td>
<td>2.42</td>
<td>Fast [Slow]</td>
<td>11</td>
<td>7</td>
<td>1</td>
<td>4.12</td>
<td>Fast</td>
</tr>
<tr>
<td>1</td>
<td>2.22</td>
<td>No drawl [Drawl]</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>5.11</td>
<td>No drawl</td>
</tr>
</tbody>
</table>

All rights reserved
It’s fairly straightforward to classify many of these attributes as ones associated with language standardness (or correctness, Factor 1), or solidarity (or pleasantness, Factor 2). If this is the case, then the North or local area will outpace the South for those qualities associated with both correctness and pleasantness, and they clearly do as shown in Figures 10 and 12, but Table 1 tells a slightly different story. For the standard characteristics, everything is as expected: the North is smarter, better educated, and speaks better English. (It is also more normal and has neither a drawl nor a twang, providing evidence that these features too should be linked to standardness.) The contrast with the previous tasks lies in the dimension of solidarity (pleasantness).

The South is ranked higher than the North for the qualities friendliness, down-to-earth, casual, and polite, these latter two, at least in this task, allied to solidarity. In other words, when asked to rate the states for pleasantness, Michigan respondents found their own area and a few others outside the South the best; when asked to rate specific characteristics of language variety, some of which are surely components of pleasantness, they found the South better.

There are two ways to interpret these results. The first is a uniformitarian approach that suggests Michigan respondents have an attitude towards speech regions (in this case, one towards the North and another towards the South) as regards pleasantness and that only one of these tasks was successful in teasing it out. The second, and I believe better way to proceed, suggests that these tasks awaken different aspects of the various attitudes that respondents have towards objects to be evaluated and that it is better to characterize that system of regard than to search for a single truth.

Is it possible to extract yet another response from the underlying set of beliefs about language varieties held by Michigan respondents? The matched-guise research just described triggered a response to the solidarity characteristics that was very different from the simple pleasantness ranking task. Surely the Michigan view of local correctness is so fundamental in the regard inventory that it cannot be challenged. Labov (1966: 332–335) introduced a measure of linguistic insecurity that asked respondents what the correct pronunciation of a word was and then what their personal usage was. When a respondent declared their personal use to be different from what they had just identified as the standard, each such mismatch was tallied as an instance of linguistic insecurity. Labov found the overall scores of New Yorkers on this test to be very bad, evidence of their low regard for local speech (Chapter 13), a regard Labov even calls “linguistic self-hatred” (344).

Owens and Baker (1984) replicated the New York insecurity study in Winnipeg, and found that their Canadian respondents were much more linguisti-
cally secure than Labov’s New Yorkers. Preston (2013) replicated this same test among young southeastern Michigan respondents, but with an amazing result. The Michigan respondents found their own usage nonstandard, i.e., they were as insecure as the New Yorkers and considerably more insecure than the Winnipeg respondents (10). Labov is explicit about the match between regard for New York City speech and the individual: “We find that the negative attitude towards the city speech in general is directed by the respondent towards himself [sic] as well” (1966:345).

Labov’s New Yorkers appear to be a little less complex in the area of regard for local language correctness. Their cognitorium links the regard for personal performance to the regard for place. Michiganders, however, seem to have two repositories of local correctness. The first, correctness in general, gives very high regard to place for correctness; the second, regard for personal correctness, is not very high at all. In other words, it was necessary to carry out a task that revealed local as well as personal assessments of correctness to construct a more complete account of the repository for correctness regard among southeastern Michigan respondents.

I will not venture here to draw an even partial cognitorium of language regard for Michigan respondents. It will be dominated by language correctness, and such correctness will be assigned strongly to the local area, but with a component of individual deprecation. Local speech is pleasant, but, given the right circumstances, certain pleasant values (friendliness for example) may be assigned to the area usually rated quite low in other tasks (the US South). If one wants to learn the characteristics of language regard in a speech community or other delimited group, it will paint a more complete picture to proceed with various tasks that allow for a weighting of the complex elements that lie within the individual. Obviously, many more tasks could be considered, and many are exemplified in this volume.

4. So what?

Linguists will want to know what the results of regard studies offer the more central concerns of the field. For some it will not be sufficient to cite Hymes’ ethnographic rationale:

If the community’s own theory of linguistic repertoire and speech is considered (as it must be in any serious ethnographic account), matters become all the more complex and interesting. (Hymes 1972:39)
The remainder of this chapter shows how regard sheds light on matters beyond the ethnographic, including variation and change as suggested above in the discussion of the importance of evaluation in Weinreich et al. 1968).

In offering this evidence, I continue to use US data, specifically responses and categorizations from the same (or similar) southeastern Michiganders discussed above. Their local vocalic system is the first object of discussion. Southeastern Michigan, like other areas around the Great Lakes of the US (particularly urban areas) supports a system known as the Northern Cities Chain Shift (NCCS), e.g., Labov et al. 2006.

![Figure 18. Northern Cities Chain Shift vowels in dark squares; a conservative US system in light squares (Peterson & Barney 1952); arrows point to the difference between the two](image)

As Figure 18 shows, the NCCS involves (1) /æ/ raising, (2) /a/ fronting and lowering, (3) /ɔ/ lowering and fronting, (4) /ɛ/ backing and lowering (along two tracks), (5) /ʌ/ backing, and (6) /ɪ/ lowering and backing.

In the first experiment presented here, NCCS vowels were presented in single-word environments to seventy young, European-American respondents from suburban southeastern Michigan, all of whom were NCCS speakers. They were asked simply to write down the word they heard. One goal of the test was to see what sorts of misclassifications might arise, and two possibilities were imagined. First, respondents might misclassify those tokens that were close to one another in the phonetic space of the NCCS (or “new”) system, i.e., their own. Second, respondents might misclassify tokens that were close in phonetic space to the vowels of the more conservative (or “old”) system, the ones shown in open squares in Figure 18. For example, if a respondent heard a raised and fronted NCCS (in this
test, in the word “pat”) with reference to the old system, Figure 18 suggests that it would be perceived as /ɛ/ or /e/, but if it was heard with reference to the “new” system, it would more likely be perceived as /ɪ/ or /e/. Here is a list of all these likelihoods, based on the proximity of the experimental vowels to the vowels of the NCCS or the conservative system:

If the “new” (NCCS) positions are targets for misclassification:

a. /æ/ might be confused with /ɪ/ or /e/
b. /a/ might be confused with /ɔ/

c. /ɔ/ might be confused with /a/
d. /ɛ/ might be confused with /ɪ/
e. /ʌ/ might be confused with /ɛ/ or /o/
f. /ɪ/ might be confused with /æ/

If the “old” (pre-NCCS, Peterson and Barney) positions are targets for misclassification:

a. /æ/ might be confused with /e/ or /ɛ/
b. /ɑ/ might be confused with /æ/
c. /ɔ/ will not be confused
d. /ɛ/ might be confused with /ʌ/
e. /ʌ/ might be confused with /ɑ/
f. /ɪ/ might be confused with /ɛ/

Table 2 shows the words presented to the respondents in the first column and the identity of the response in the top row. The grayed cells show the number correct, and the bold numbers show the cases in which the “old” or conservative system was the source of the error. For example, the word “tin” was heard correctly 44 times, 25 times incorrectly as /ɛ/ (an “old” system error), and only once incorrectly as /ɑ/ (a random error). Since many single errors were phonetically and phonologically unreasonable, single errors were ignored. Mishearings that could be attributed to the new (NCCS) system are italicized and those that can be attributed to the old (conservative) one are bolded.

As the bold numbers in Table 2 show, 103 misunderstandings were based on the older, conservative system, and only 18 were made in the direction of the new system. Why would these hearers not classify the experimental vowels in the direction of their proximity to those of their own system? The answer lies in regard. The Michigan quandary is this: How can we be the best speakers when our vowel system is different from the conservative standard? Their cognitive dissonance is resolved by their high regard for local speech, causing them to embed a phonological system that reflects a conservative positioning of the vowels rather than their actual shifted one. In this task at least, they
Does language regard vary?

continue to reference the older system, one they have access to through speakers from other areas, older speakers in their own area, speakers in their own area less advanced in the shift, and media exposure (Evans et al. 2006). In this case, (1) the respondents attended to the words in an experimental situation, one in which the phonetic evidence was that the speakers were just like them (i.e., young, European-American speakers from southeastern Michigan); (2) auditory discrimination (detection of the phonetic signal) may have proceeded normally, but (3) classification was sometimes derailed by reference to a conservative, regard-based phonological system.

Perhaps even segment discrimination can be influenced by regard. Niedzielski (1999) presented Detroit-area southeastern Michigan respondents (all NCCS speakers) with three samples of the vowel /æ/ (in the word “last”). The first was a raised and fronted token, typical of the NCCS, the second was a conservative token (see Figure 18 for both of these), and the third was an exaggeratedly low and back version, one near the vowel space of /ɑ/, particularly an NCCS one. The respondents first heard a model NCCS token, were asked to remember it, and were told the speaker was from Michigan; they were then asked to match it with one of the three versions just described. This should have been an easy task since the three are acoustically quite distinct, but none of the respondents (N=42) paired the NCCS model with the second NCCS token. Thirty-eight identified it with the conservative token, and four even suggested that it was the same as the exaggeratedly lowered and backed one (72). Just as Michiganders misclassify single-word items in terms of the conservative system, in this study they also incorrectly identify phonetic alternatives for exactly the same reason. They regard their variety

<table>
<thead>
<tr>
<th>Table 2. Results of a Michigan NCCS comprehension test for 70 respondents (N.B.: one respondent each did not give a response for “Ben” and “boat”)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>beet</td>
</tr>
<tr>
<td>tin</td>
</tr>
<tr>
<td>bait</td>
</tr>
<tr>
<td>Ben</td>
</tr>
<tr>
<td>pat</td>
</tr>
<tr>
<td>hot</td>
</tr>
<tr>
<td>done</td>
</tr>
<tr>
<td>dawn</td>
</tr>
<tr>
<td>boat</td>
</tr>
<tr>
<td>boot</td>
</tr>
</tbody>
</table>

All rights reserved
as the most correct in the US; therefore, since Niedzielski told them the speaker was from Michigan, they refused to hear the NCCS model in the phonetic space it occupied. Instead, they identified it as the conservative (or even the exaggerated) version of US English /æ/.

Psycholinguists, speech scientists, and others interested in comprehension and/or discrimination, perhaps especially in experimental settings in which the respondents know the focus is on language, would be well-advised to be on the lookout for the influence of regard-based interference, an effect that does not ordinarily appear in everyday, contextualized speech.

Can students of language and culture who deal with the details of variation be advised by regard findings? I believe so. Plichta and Preston (2005) played a continuum of pronunciations of the word “guide” in which the vowel ranged from fully diphthongal to fully monophthongal. The monophthong ([aː]) is a well-known caricature of US southern speech, and this research originally sought to discover if US respondents would be sensitive to degree of monophthongization in terms of region; i.e., they would place more monophthongal versions farther south. Male and female speakers’ fully diphthongal tokens were resynthesized to exactly the same degree of monophthongization along a seven-step continuum and played for respondents in a web-based survey. For each token they were asked to identify the city they believed the speaker was from (Figure 19). The sites were assigned the values shown in Figure 19 (Saginaw = 1, Coldwater = 2, etc…), and the mean score was calculated for each of the seven-step versions of “guide.” The lower the mean, the more likely the respondents thought the token was “northern”; the higher, the more “southern” it was perceived.

Table 3 shows that US respondents not only associate monophthongization of ([aɪ]) with the South but also associate greater monophthongization with more southern sites. So far, however, it is difficult to see how regard has played a major role in this discrimination. One could say only that monophthongization is associated with southern speech and that the ability to discriminate degree forces a more southern interpretation of the signal. Remember, however, that the respondents heard male and female voices, resynthesized so that their degree of monophthongization was the same at every step.

8. Readers who would like to see a partial cognitorium of Northern regard for Southern speech should see Preston 2010a: 18 or several examples in Preston 2010b.
Figure 19. The nine sites in the US to which respondents assigned pronunciations of “guide” (Plichta & Preston 2005)

Table 3. Mean scores for each step in the “guide” continuum (1=completely diphthongal to 7=completely monophthongal) based on association with the regions in Figure 19

<table>
<thead>
<tr>
<th>Region</th>
<th>Step</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Saginaw, MI</td>
<td>1</td>
<td>2.85</td>
</tr>
<tr>
<td>2. Coldwater, MI</td>
<td>2</td>
<td>3.17</td>
</tr>
<tr>
<td>3. South Bend, IN</td>
<td>3</td>
<td>3.87</td>
</tr>
<tr>
<td>4. Muncie, IN</td>
<td>4</td>
<td>4.89</td>
</tr>
<tr>
<td>5. New Albany, IN</td>
<td>5</td>
<td>5.99</td>
</tr>
<tr>
<td>6. Bowling Green, KY</td>
<td>6</td>
<td>6.58</td>
</tr>
<tr>
<td>7. Nashville, TN</td>
<td>7</td>
<td>7.02</td>
</tr>
<tr>
<td>8. Florence, AL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dothan, AL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 20. Perceived regional position of the seven-step monophthongized version of “guide” by sex (Plichta & Preston 2005: 121)

Figure 20 shows that at every step men were heard as more southern and women as more northern. Why is a man’s voice, with the same degree of monophthongization as a woman’s, regarded as “more southern”? (Or why is a woman’s voice regarded as more “northern”?) Recall that Figure 10 showed the southern states as worst-rated for language correctness (with the exception of New Jersey and New York City), but it is also a sociolinguistic commonplace that women are more standard speakers than men. The respondents, in this case from all over the US, not only distinguished levels of monophthongization as to region but let another of their language regard concepts (men and women differ on the standardness dimension) interfere with their discrimination of the quality of the vowel. The respondents were likely skewed in their ability to discriminate the degree of monophthongization (“southerness”) on the basis of the sex of the voice due to their regard association of standard speech with women and nonstandard speech with men. Since the US South is perceived as a nonstandard or “incorrect” speech area, this additional regard factor, coupled with the sex stereotype, caused the consistent misassignment.

These discrimination findings show that the very acoustic signals linguists from many areas of the field depend on can be easily redirected by language users due to regard factors. These several examples should also make it clear that language regard concepts may have their origins in accurate or inaccurate social and linguistic stereotypes.

Finally, how will language regard factors interact with what might be viewed as purely linguistic motivations for sound change? Consider the following scenario.
for early stages of the NCCS. Figure 21 shows a case where the area of the low front vowel /æ/ (shaded circles) contains a single case of the /a/ vowel (an unfilled square). The normal territory for this vowel in non-NCCS speakers (i.e., Peterson and Barney-like) is farther back in the vowel space, and, if one considers only the tokens in that area, the mean is shown in the center of the territory (the dark square) at 1550Hz for F1. If respondents do not hear the outlier as an example of an /a/ word (i.e., they misunderstand the outlier as an /æ/ word, a plausible interpretation as shown in Table 2), then the system is probably not influenced.

Figure 21. A fronted /a/ in the /æ/ vowel space (Adapted from Labov 2002)

In Figure 22, however, the /æ/ tokens have fronted, as they do in the first stages of the NCCS, leaving the previously surrounded /a/ token behind in the vowel space (the leftmost light square), one more likely to be understood as an instance of /a/, and a contributor to a new mean score of 1571Hz (the dark square) for that vowel class.

Figure 22. A fronted /a/ left behind after the fronting of /æ/ and a new center of the /a/ vowel space (Adapted from Labov 2002)
As the experimental work on regard discussed above shows, however, it is not the case that NCCS speakers will unerringly hear the frontmost examples of /a/ as members of that vowel class. They appear to have constructed a “phantom” vowel space based on the old, conservative position of /æ/, one that ignores the fronted tokens of /æ/ as well as those of /a/. Figure 23 shows this space for /æ/ (in a dashed box), a conservative one apparently invoked when the regard element of local language correctness is triggered in a respondent’s cognitorium.

![Figure 23. A “phantom” (conservative) vowel space for /æ/ (Adapted from Labov 2002)](image)

When this phantom space is fully activated, Figure 24 shows (some of) the results. Tokens of fronted (i.e., incipient) NCCS /æ/ are pruned from the respondent’s system (the Xed-out circles in the fronted /æ/ space), exactly as shown in Niedzielski 1999. The frontmost /a/ tokens (indicated by arrows in Figure 24) are now within the phantom space for /æ/ and are understood as such (e.g., the nine tokens of /a/ misunderstood as /æ/ in Table 2). Respondents must have also filled the phantom space with imagined tokens (the dark circles), for a few of Niedzielski’s respondents matched an NCCS token with a very low and retracted one from the lower right corner of the phantom space, allowing a hearer to recognize what would have been an /a/ even in the conservative system as an /æ/.9

To return to the characteristics of variation and change outlined in Weinreich et al. (1968) cited at the beginning of this chapter, these regard-influenced data link one characterization of the evaluation problem to the social side of the embedding problem. How can Michigan speakers embed a new vowel system which would replace a standard (“correct”) one when they are so focused on their own

9. I leave it up to the reader to construct the phantom space (and center) for /a/ and even /ɔ/ and relate those spaces to the misunderstandings shown in Table 2.
correctness? The answer is a curious combination of conscious and nonconscious activities. Michiganders clearly believe that what they do is standard and correct, and that conscious evaluation accounts for the formation of a phantom, conservative system that allows them to mishear their own and others’ vowel performances in the face of the rapidly advancing (and for many fully advanced) NCCS change. Activation of that system, however, is not conscious or at least not at the same level of consciousness as their overtly held belief in local correctness. It allows, therefore, change from below the level of consciousness, surely a requirement for a group that believes in its own correctness. Without this array of evidence of regard for their own speech, the full story of the steps involved in the acquisition of the NCCS, a story of language change in progress, could not be told.

5. Conclusions

This is a story both like (and not like) the account of variety change in Denmark (Kristiansen, this volume). There residents from several locales evaluated their own variety as the one they “liked” best (most pleasant?). When presented with actual speech samples, however, they preferred modern Copenhagen speech for solidarity factors (cool, nice, etc… – called “dynamism” in Kristiansen’s account) over their own varieties and conservative Copenhagen area speech for standard-ness characteristics (intelligent, goal-directed, etc… – Kristiansen’s “superiority”). Linguistic change all over Denmark, however, shows change in the direction of modern Copenhagen speech, a variety preferred only when offered in a matched guise format, one which Kristiansen labels nonconscious and declares to be the guiding regard principle for linguistic change. Michiganders do not prefer their own speech for pleasantness in some regard tasks but do in others. They clearly
prefer their own in conscious, overt evaluations. In a matched guise task without speech samples, their own speech is regarded as superior for correctness or standard features but not so highly for solidarity ones. Lacking in the Michigan test is a speech sample presentation of the conservative (older) Michigan norm and the emerging (and emerged) NCCS norm. Lacking in the Danish studies are accounts of the specific linguistic features that may be perceived (or misperceived) as local or not and the values assigned them.

In every case, a study of the regard features respondents retrieve from their beliefs about people and their language varieties can enhance the understanding of the social embedding of language change. In many cases, there is simply more to be done. At least the following facts might be considered in the collection of regard responses:

A: Setting
 1. Actual – home, laboratory, etc…
 2. Context – contextualized vs. noncontextualized

B: Stimulus
 3. Priming – primed vs. non-primed
 4. Presentation – video, written stimulus, pictures, etc…
 5. Size – global vs. specific
 6. Status – stigmatized, prestige, neutral, etc…
 7. Access – direct vs. indirect access to a linguistic stimulus
 8. Authenticity – native vs. imitated
 9. Naturalness – natural vs. (re)synthesized
 10. Presence – an actual linguistic stimulus is provided or not provided

C: Respondents
 11. Non-targeted vs. targeted

D: Response
 12. Behavior – respondent activity or task (rate, read, observe, perform, etc…)
 13. Mode – fixed (Likert scale, forced choice, etc…) vs. open-ended (discoursal, eye-tracking, etc…)
 14. Timing – present vs. absent
 15. Awareness – unaware (subconscious) vs. aware (conscious) (Preston & Niedzielski 2013)

Of course no single scholar or even team can cross-classify local data based on a manipulation of all these contexts and conditions for the collection of regard responses. They illustrate, however, the potential for differing responses to arise from the variety that is there in the cognitorium, the repository of regard beliefs.
Variation in language regard is important because linguists need to know not only how language varies and what people think about it but also what the interaction is between performance and the variability in regard. Since such variability in regard may surface in its link to performance, a cognitive foundation for language regard that admits variability will play an important part in the explanatory areas of language variation and change.

References

Evans, Betsy E., Ito, Rika, Jones, Jamila & Preston, Dennis R. 2006. How to get to be one kind of Midwesterner: Accommodation to the Northern Cities Chain Shift. In Language Variation and Change in the American Midland [Varieties of English around the World G36], Thomas Murray & Beth Lee Simon (eds), 179–197. Amsterdam: John Benjamins. DOI: 10.1075/veaw.g36.14eva

All rights reserved

All rights reserved

Preston, Dennis R. 1999b. A language attitude approach to the perception of regional variety. In Preston (ed.) 1999a, 359–73. DOI: 10.1075/z.hpd1.30pre

